📊Промт дня: быстрый разведочный анализ (EDA) нового датасета
Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.
Промт:
Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты: • Определи типы переменных (числовые, категориальные и пр.). • Проверь наличие и долю пропущенных значений по столбцам. • Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.). • Оцени распределения признаков и выдели потенциальные выбросы. • Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.
🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.
Поддерживается использование специализированных инструментов: 📝pandas_profiling / ydata-profiling — для автоматического отчета, 📝sweetviz — для визуального сравнения датасетов, 📝seaborn и matplotlib — для точечных визуализаций распределений и корреляций.
📊Промт дня: быстрый разведочный анализ (EDA) нового датасета
Перед тем как приступить к построению моделей или визуализаций, важно понять, с какими данными вы работаете. Разведочный анализ (Exploratory Data Analysis, EDA) помогает выявить структуру, качество и ключевые особенности датасета — это фундамент любого проекта в области аналитики и машинного обучения.
Промт:
Выполни экспресс-EDA (Exploratory Data Analysis) на pandas DataFrame. Проанализируй следующие аспекты: • Определи типы переменных (числовые, категориальные и пр.). • Проверь наличие и долю пропущенных значений по столбцам. • Рассчитай базовые статистики (среднее, медиана, стандартное отклонение и т.д.). • Оцени распределения признаков и выдели потенциальные выбросы. • Сформулируй ключевые наблюдения и инсайты, которые могут повлиять на последующую обработку или моделирование данных.
🎯 Цель — получить общее представление о структуре, качестве и особенностях данных до начала построения моделей или визуализаций.
Поддерживается использование специализированных инструментов: 📝pandas_profiling / ydata-profiling — для автоматического отчета, 📝sweetviz — для визуального сравнения датасетов, 📝seaborn и matplotlib — для точечных визуализаций распределений и корреляций.
The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.
A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.
Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from us